
MATRIX-FREE PRECONDITIONER FOR THE STEADY
ADVECTION-DIFFUSION EQUATION WITH SPECTRAL ELEMENT

DISCRETIZATION ∗

HOWARD ELMAN† AND P. AARON LOTT‡

Abstract. We introduce a preconditioning technique based on Domain Decomposition and the Fast Diago-
nalization Method which can be applied to tensor product based discretizations of the steady advection-diffusion
equation. The method is based on iterative substructuring with fast diagonalization to eliminate the interior de-
grees of freedom. We demonstrate the effectiveness of this preconditioner in numerical simulations using a spectral
element discretization.

1. Introduction. The interplay between inertial and viscous forces in a fluid dictates
the length scale where energy is transferred, thus determining the resolution required to cap-
ture flow information accurately. This resolution requirement poses great theoretical, experi-
mental and computational challenges as the advective nature of the flow begins to dominate
diffusive effects. In such flows, advection and diffusion occur on disparate scales, which
has motivated the development and use of splitting schemes [1]. The standard method for
performing steady and unsteady flow simulations with spectral elements is operator integra-
tion factor splitting (OIFS)[5]. They typically involve time integration, even in steady flow
simulations. These methods treat advection and diffusion separately; advection components
are tackled explicitly using a sequence of small time steps that satisfy the CFL condition,
and diffusive components are treated implicitly with larger time steps via a backward dif-
ferencing formula that couples the system. Such schemes have been successfully applied in
a variety of settings including massively parallel turbulence simulations which require long
time integration to obtain useful flow statistics.

This paper discusses a new approach for simulating steady flows by treating the advective
and diffusive components together. Our method builds on ideas from iterative substructuring
by exploiting fast diagonalization to eliminate degrees of freedom in elemental interiors. The
efficiency of this method is centered on two advances: the first is the use of an accurate
element-based high order matrix-free discretization to construct accurate discrete solutions
while minimizing memory requirements; the second is the use of fast iterative solvers via
effective preconditioners that take into account memory hierarchies and efficient cache use to
enable processor performance.

2. Spectral Element Discretization.The spectral element method is a Galerkin method
based on the method of weighed residuals, in which a weak form integral equation is solved.
When multiple elements are used, the integral equation is broken up into a summation of the
integrals on each element. The element-based integrals are then approximated by numeri-
cal quadrature. In particular, the solution is represented by a basis of high order Legendre
polynomials at Gauss-Legendre-Lobatto quadrature nodes. The resulting system of linear
matrix equations numerically represents the original integral equation on each element. Rect-
angular elements allow each elemental system to be represented via tensor products of one-
dimensional operators. Inter-element coupling of these matrix equations ensures continuity

∗ This work was supported by the U. S. Department of Energy under grant DEFG0204ER25619, and by the U.
S. National Science Foundation under grant CCF0726017.

†Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, Col-
lege Park, MD 20742, elman@cs.umd.edu

‡Applied Mathematics and Scientific Computation Program, University of Maryland, College Park, MD 20742,
palott@ipst.umd.edu

1

2 H. ELMAN AND P. A. LOTT

along elemental boundaries. These inter-element couplings can be enforced by either con-
structing a fully coupled sparse linear system of equations, or by performing a gather-scatter
operation that sums the solution along element boundaries after element-based matrix-vector
products are performed. This gather-scatter operation coupled with the tensor product for-
mulation of elemental operators yields a matrix-free discretization, in which only matrices
associated with one-dimensional phenomena need to be stored.

Compared to low order methods, spectral methods require about half as many degrees
of freedom in each spatial dimension to accurately resolve a flow. The trade-off for this low
memory requirement is an increase in computational cost per degree of freedom. By using
the Spectral Element Method, we retain the accuracy of spectral methods and gain the flex-
ibility of a matrix-free discretization to invoke cache efficient element-based matrix-matrix
calculations [8]. These element-based calculations provide improved parallelism over spec-
tral and low order methods via reduced global communication and small surface to volume
ratios on each element. Together, these computational efficiencies offset the added cost per
degree of freedom, thus making spectral elements a competitive choice for discretizing the
advection-diffusion equation.

3. Steady Advection-Diffusion Equation. The advection diffusion equation governs
many flows. This equation can be written as

−∇2u+(~w ·∇)u = f (3.1)

whereu represents velocity, the vector field~w = (wx(x,y),wy(x,y))T represents advection or
wind speed at each point in the domain, andf represents body forces acting on the fluid.
Following the discretization strategy discussed in section2, equation (3.1) is recast in the
weak form:

Findu∈ H1
E such that:

Z
Ω

∇u·∇v+
Z

Ω
(~w ·∇u)v =

Z
Ω

f v ∀v∈ H1
E0

. (3.2)

To discretize (3.2), we restrictu andv to finite dimensional subspaces by dividing the domain
Ω into E non-overlapping subdomains (elements)Ω = ∪E

e=1Ωe; each subdomain is then dis-
cretized using tensor products of Lagrangian interpolants onN degree Legendre polynomials
πN. Thus, on each element the solution is of the form

u(x,y) =
N+1

∑
i=1

N+1

∑
j=1

ui j πN,i(x)πN, j(y) (3.3)

The coefficientsui j correspond to the nodal values ofu on the tensored Gauss-Legendre-
Lobatto (GLL) quadrature points defining a discrete solution on each element.

The mass matrix is defined to be the block diagonal matrixM = diag(Me) whereMe is
the local mass matrix on an element of sizehx× hy is represented via a tensor product of
one-dimensional operators

Me =
hxhy

4
M̂⊗ M̂. (3.4)

Due to the orthogonality of the basis functionsπN,i andπN, j the mass matrix is diagonal.
The one-dimensional operator̂M = diag(ρi) i = 1 : N + 1 whereρi is the GLL weight

PRECONDITIONERS FOR ADVECTION-DIFFUSION EQUATION 3

associated with theith GLL quadrature nodeξi . Likewise, the advection-diffusion operatorF
is represented on each element through this basis, namely

Fe
x = (M̂⊗

hy

hx
Â)+We

x (M̂⊗
hy

2
D̂) (3.5)

Fe
y = (

hx

hy
Â⊗ M̂)+We

y (
hx

2
D̂⊗ M̂)

Fe(we) = Fe
x +Fe

y

The discrete two-dimensional diffusion operator is formed via tensor products of the one-
dimensional second derivative operatorÂ with the one-dimensional mass matrix̂M. Simi-
larly, the advection operator is formed via a tensor product of the one-dimensional deriva-
tive operatorD̂ with the mass matrixM̂, then scaled by the wind speed at each node via the
(N+1)2×(N+1)2 diagonal matricesWe

x = diag(wx(ξi ,ξ j)) andWe
y = diag(wy(ξi ,ξ j)). The

one-dimensional spectral differentiation matrixD̂ is defined as

D̂i j =
dπ j

dr
|r=ξi

i, j ∈ {1, ..,N+1}2, (3.6)

and the one-dimensional second derivative operatorÂ is defined in terms of the spectral dif-
ferentiation matrixD̂:

Âi j =
N+1

∑
k=1

D̂kiρkD̂k j i, j ∈ {1, ..,N+1}2. (3.7)

With this discretization strategy we obtain the system of linear equations

F(~w)u = M f = b (3.8)

whereF(w) is the non-symmetric advection-diffusion operator, andM the diagonal mass
matrix. This system is solved using an iterative scheme, namely, preconditioned GMRES
[6]. In section5 we discuss the preconditioning methods used to expedite the convergence of
GMRES, but first we introduce a fast solver for tensor product based computations.

4. Fast Diagonalization Method (FDM) . The spectral element discretization enables
the advection-diffusion equation to be written as sums of tensor products on each element.
This form is particularly useful when performing matrix-vector products, and when solving
certain elemental systems of equations. The Fast Diagonalization Method (FDM) [4] allows
for the solutions of systems in which the coefficient is of ordernd and has a tensor product
structure inO(nd+1) operations, whered represents the number of spatial dimensions andn
represents the number of quadrature points used along each dimension on a single element.

The Fast Diagonalization Method cannot be used with non-constant coefficients as in
equation (3.5). However, by constructing a preconditioner for equation (3.8) based on local
bi-constant winds, we can use FDM to solve a constant coefficient problem on each element.
In the remainder of the section, we demonstrate how the FDM is applied to the resulting
equations.

Consider equation (3.5) in the special case whereWe
x = cx andWe

y = cy are both constant
on each element. This allows the advection-diffusion operator on each element to be written
as

Fe(cx,cy) = M̂⊗ F̂x + F̂y⊗ M̂ =: F̄e. (4.1)

4 H. ELMAN AND P. A. LOTT

We use the fact that̂M is diagonal to apply a transformation tōFe that will allow for fast
diagonalization. Namely,̄Fe = M̃1/2F̃M̃1/2 such that

F̃ = M̃−1/2FM̃−1/2 (4.2)

= (M̂−1/2⊗ M̂−1/2)(M̂⊗ F̂x + F̂y⊗ M̂)(M̂−1/2⊗ M̂−1/2)

= (I ⊗ M̂−1/2F̂xM̂
−1/2)+(M̂−1/2F̂yM̂

−1/2⊗ I)
= (I ⊗B)+(A⊗ I)

where bothA andB are diagonalizable. ThusA = SΛS−1, B = TVT−1 and

F̃ = (S⊗T)(Λ⊗ I + I ⊗V)(S−1⊗T−1) (4.3)

so that

F̃−1 = (S⊗T)(Λ⊗ I + I ⊗V)−1(S−1⊗T−1). (4.4)

Since the transformed matrix̃F can be diagonalized, the action of the inverse ofF can be
inexpensively applied as

F̄e−1 = (M̂−1/2⊗ M̂−1/2)(S⊗T)(Λ⊗ I + I ⊗V)−1(S−1⊗T−1)(M̂−1/2⊗ M̂−1/2). (4.5)

This formulation only depends on the inverses of diagonal matrices, and of small matrices cor-
responding to one-dimensional phenomena. We exploit this in the application of our solvers
and preconditioners as discussed in the following sections.

5. Preconditioning Advection Diffusion Equations via Iterative Substructuring. Ap-
plying a preconditionerPF that cheaply retains the spectral properties ofF(~w) one may sig-
nificantly reduce the number of iterations needed to solve (3.8). To perform matrix-vector
products involvingP−1

F , splitting methods based on multigrid have been applied successfully
within a finite element framework [2]. However, we wish to maintain a matrix-free implemen-
tation based on local tensor products, so standard splitting techniques forF are not available.
To retain the accelerated convergence of the Krylov subspace methods obtained via splitting,
we instead our preconditioner using element-wise approximations ofF(w) by approximating
the advection speed with a constant wind ¯we on each element. That is,PF := F̄ , whereF̄ is
defined on each element in (4.1).

Using this local wind approximation to formulatePF , we applyP−1
F by performing iter-

ative substructuring. The Fast Diagonalization Method is employed in element-wise solves
to obtain interior degrees of freedom, and elemental boundary conditions are determined by
an iterative Schur complement solve on the elemental interfaces. This procedure is similar
to the Additive Schwarz method used in solving the Poisson equation described in [8], but
with non-overlapping subdomains. By eliminating dense interior degrees of freedom via Fast
Diagonalization iterations on the interfaces are performed on a significantly smaller system.
Thus,PF = F̄ provides an inexpensive preconditioner that approximates local flow structure.
We outline the use of substructuring methods for application ofPF−1 in section6.

In flows where the wind coefficient~w is bi-constant,P−1
F constitutes a direct solver to

equation (3.8) (but with an iteration needed to applȳF−1
0 on the union of element interfaces).

We demonstrate the convergence and accuracy of this method as a direct solver in examples
7.1and7.2. In more general flows,P−1

F is used as a preconditioner within an iterative solution

PRECONDITIONERS FOR ADVECTION-DIFFUSION EQUATION 5

algorithm to solve equation (3.8). In such cases, the action ofP−1
F is performed as mentioned

above at each step of the iterative scheme. Thus, the preconditioned iterative solver would
require an inner iteration for the preconditioner at the interface nodes in (6.4) and an outer
iteration for (3.8). In example7.3we demonstrate the use ofP−1

F as a preconditioner.

6. Domain Decomposition via Iterative Substructuring. In this section we outline
the use of a matrix-free iterative substructuring method to perform the action of the precon-
ditionerP−1

F . Substructuring methods solve a PDE on a set of non-overlapping sub-domains
by eliminating the interior degrees of freedom, solving for inter-element interfaces, and then
using back substitution to solve for the interior degrees of freedom. In large systems, the de-
grees of freedom on elemental interfaces are determined using iterative methods. The system
that governs the elemental interfaces may be poorly conditioned, and thus requires precondi-
tioning. We outline the domain decomposition method that we use in conjunction with the
Neumann-Neumann preconditioner for the interface solve.

Subdividing the domain intoE spectral elements, with the elemental interfaces being
represented by a setΓ, and interior degrees of freedom represented by setsIe, one obtains a
system of equations of the form


F̄1

II 0 . . . 0 F̄1
IΓ

0 F̄2
II 0 . . . F̄2

IΓ
...

...
...

...
...

0 0 . . . F̄E
II F̄E

IΓ
F̄1

ΓI F̄2
ΓI . . . F̄E

IΓ F̄ΓΓ




uI1

uI2

...
uIE

uΓ

 =


bI1 − F̄uB|I1

bI2 − F̄uB|I2

...
bIE − F̄uB|IE

bΓ− F̄uB|Γ

 =


b̂I1

b̂I2

...
b̂IE

b̂Γ

 . (6.1)

Boundary conditions are implemented outside of the system operator in (6.1), by subtracting
F̄uB from the right hand side vector.̄FuB denotes the full advection-diffusion system matrix
applied to the Dirichlet boundary vectoruB. The goal now is to solve for interface valuesuΓ
in order to perform back substitution and solve foruIe on each sub-domain interior. To solve
for uΓ the system matrix in (6.1) is split into a lower and upper part


I 0 . . . 0 0
0 I 0 . . . 0
...

...
...

...
...

0 . . . 0 I 0

F̄1
ΓI F̄1

II
−1

F̄2
ΓI F̄2

II
−1

. . . F̄E
ΓI F̄E

II
−1

I




F̄1

II 0 . . . 0 F̄1
IΓ

0 F̄2
II 0 . . . F̄2

IΓ
...

...
...

...
...

0 0 . . . F̄E
II F̄E

IΓ
0 0 . . . 0 F̄0

 (6.2)

whereF̄0 = ∑E
e=1(F̄

e
ΓΓ − F̄e

ΓI F̄e
II
−1 F̄e

IΓ) represents the Schur complement of the system. By
multiplying both sides of (6.1) with the inverse of the lower triangular matrix, one obtains the
system


F̄1

II 0 . . . 0 F̄1
IΓ

0 F̄2
II 0 . . . F̄2

IΓ
...

...
...

...
...

0 0 . . . F̄E
II F̄E

IΓ
0 0 . . . 0 F̄0




uI1

uI2

...
uIE

uΓ

 =


b̂I1

b̂I2

...
b̂IE

gΓ

 (6.3)

6 H. ELMAN AND P. A. LOTT

with gΓ = ∑E
e=1(b̂Γe− F̄e

ΓI F̄e
II
−1 b̂Ie). The interface variables are then obtained by solving

F̄0uΓ = gΓ. (6.4)

Writing F̄0 = ∑ F̄e
0 allows for efficient tensor product based (see appendix (8)) computation of

the elemental matrix-vector products, which can be used to apply the matrix on each element
inside a GMRES solver. OnceuΓ is obtained it is substituted back into (6.3) to provide
elemental boundary conditions for the interior solves. The interior variablesuIe are then
obtained via element-wise fast diagonalization. We note thatF̄e

II
−1 in the Schur complement

operator is performed in the same manner.
To reduce the number of GMRES iterations required to solve (6.4) a Neumann-Neumann

preconditioner is employed. The Neumann-Neumann method uses∑D(e)T (
F̄e

0

)−1
D(e) as

a preconditioner for (6.4). A simple two-domain case illustrates that with this choice, the
preconditioned system is approximately a scaled identity when the sub-domains are of similar
size i.e.F̄1

0 ≈ F̄2
0

(F̄1
0
−1

+ F̄2
0
−1

)(F̄1
0 + F̄2

0) = 2I + F̄2
0
−1

F̄1
0 + F̄1

0
−1

F̄2
0 = 2I + F̄2

0
−1

F̄1
0 + (F̄2

0
−1

F̄1
0)

−1
.(6.5)

The matricesDe are chosen to provide an appropriate inverse scaling factor. The conver-
gence factor of the preconditioned system is bounded byC

H2 (1+ log(N))2 [7] whereC grows
with the norm of the advection coefficient‖w‖, N is the order of the spectral element basis
functions and H is the diameter of a typical elementΩe. In the case of many domains, it is
essential to provide an additional coarse grid solve to eliminate the 1/H2 dependence. When

applying the preconditioner it is not necessary to form̄F(e)
0

−1
on each element since

F̄(e)
0

−1
v = (0 I) F̄(e)

DD

−1
(

0
I

)
v (6.6)

where

F̄(e)
DD =

[
F̄e

II F̄e
IΓ

F̄e
ΓI F̄e

ΓΓ

]
(6.7)

7. Results. We demonstrate the effectiveness of a constant coefficient approximation on
subdomains. First we use use fast diagonalization and domain decomposition as a solver for
two cases (7.1, 7.2) where the advection coefficient is constant in each direction. We then
demonstrate in section7.3 how this method performs as a preconditioner for systems with
non-constant advection coefficients.

7.1. Example 1: Analytic solution with outflow boundary layer. We first introduce a
problem whose solution exhibits a dramatic change in the outflow boundary aty = 1. This
problem has an analytic solution [3], and Table7.1 shows that as the polynomial degree is
doubled the discretization error is reduced by two orders of magnitude. This reduction in
error confirms the expected exponential convergence to the solution. Additionally, Table7.1
lists the number of GMRES iterations required to solve (6.4) for the velocity at the elemental
interface nodes. A plot of the numerical solution and the velocity contours is given in Figure
7.1. By way of contrast, in Table7.2 we show algebraic convergence results for a second

PRECONDITIONERS FOR ADVECTION-DIFFUSION EQUATION 7

order finite element solution usingP−1
F as a solver. We mention that the number of iterations

for the finite element method is greater due to the increased number of interface nodes. This
substantiates a central efficiency of the spectral element method via the large volume to sur-
face ratio of nodes on each element. In the discretization corresponding to Figure7.1 there
are roughly five times fewer interface nodes than there are interior nodes, this means the Fast
Diagonalization Method can efficiently eliminate a large portion of the degrees of freedom
directly, and we only need to obtain an iterative solution corresponding to a relatively small
number of degrees of freedom, thereby significantly reducing the number of operations to
obtain a solution.

TABLE 7.1
Spectral convergence for example 1.

Number of
N ‖u−uh‖2 Iterations
4 1.185×10−1 26
8 1.199×10−3 39

16 1.308×10−5 61
32 1.353×10−9 132

TABLE 7.2
Algebraic convergence for example 1.

Number of
E ‖u−uh‖2 h Iterations
4 .4704 .25 50
8 .2605 .125 67

16 .0757 .0625 165
32 .0137 .03125 210

The iteration results in Tables7.1 and7.2 correspond to the number of iterates required to
obtain an interface solution to (6.4) using non-preconditioned GMRES. In addition to these
iterations, a solution on the element interiors is obtained via Fast Diagonalization. These re-
sults are preliminary since our Neumann-Neumann preconditioner for the Schur compliment
solve in (6.4) is not yet in place. We expect the number of iterations to be reduced substan-
tially via this preconditioner. In particular, we hope to obtain a fixed iteration count via a
coarse grid multilevel Neumann-Neumann preconditioner.

FIG. 7.1.Steady advection diffusion flow with bi-constant winds. Left~w = (0,20) and outflow boundary layer
at y= 1, convergence results in Table7.1. Spectral element discretization with 4 elements in each dimension, and
polynomial degree 16 on each element.

7.2. Example 2: Moderate wind with internal boundary layer. In our second exam-
ple we demonstrate the effectiveness of our method at capturing the internal boundary layer
(see Figure7.2) that results from a jump discontinuity in the inflow region of the boundary.
In this flow the advection speed is significantly larger than in the previous example causing
the flow to exhibit sharp features as shown in Figure7.2. Using iterative substructuring, GM-
RES converges within 10−5 in 110 steps without Neumann-Neumann preconditioning. In
this example, the Schur complement solve involves a system with roughly five times fewer
unknowns than the global system.

8 H. ELMAN AND P. A. LOTT

FIG. 7.2. Steady advection diffusion flow with bi-constant winds~w = 200(−sin(π/6),cos(pi/6)). Flow ex-
hibits an internal boundary layer O(

√
1/200) and jump discontinuity in boundary at (0,-1). Spectral element dis-

cretization with 8 elements in each dimension, and polynomial degree 16 on each element. GMRES converges to
10−5 in 110 steps without preconditioning.

7.3. Example 3: Recirculating wind with characteristic boundary layers. To test
our preconditioner, we use a recirculating wind~w = 200(y(1−x2),−x(1−y2)). Discontinu-
ities at the corners of the nonzero boundary lead to boundary layers (see Figure7.3). Figure
7.3illustrates the convergence behavior of the preconditioned and non-preconditioned system
for solving (3.8). Flexible GMRES [6] is used for the outer iteration, and non-preconditioned
GMRES is used to solve the Schur complement system inexactly inside the application of
the preconditioner. In Figure7.3 we compare the number of iterations required for our pre-
conditioned system; it is prohibitively expensive to acquire an accurate solution using GM-
RES without preconditioning, whereas the preconditioned system, using Flexible GMRES
converges in 22 iterations. That is, we compute an inexact interface solutionuΓ with 1%
accuracy,‖F̄0uΓ − gΓ‖ < .1‖gΓ‖, this requires approximately 30 inner GMRES iterations.
Because of this inexact inner step, we use Flexible GMRES [6] for the outer iteration.

By employing a Neumann-Neumann preconditioner for the Schur complement solve, we
expect a reduced iteration count for the interface solve, and hope to be able to efficiently
obtain a more accurate solution at the interface to improve the iteration count for the Flexible
GMRES system. However these preliminary results are encouraging. The cost of the inexact
interface solve isO((N +1)(120E +N +1)). Additionally each application ofP−1

F requires
the Fast Diagonalization Method to be performed on element interiors the cost of this is
roughly the same as a matrix-vector multiplyO(E(N + 1)2). The work per iteration will
change with the inclusion of a Neumann-Neumann interface preconditioner, the number of
operations required per application ofP−1

F will be O(2E(N +1)2 +(N +1)(4ME +N +1))
whereM denotes the number of interface iterations (30 in this example without the Neumann-
Neumann operator), the additional factor of 2 in the first term corresponds the application of
the Neumann-Neumann preconditioner as prescribed in equation (6.6).

8. Conclusion. We have developed a matrix-free solution method for tensor-product
based discretizations of the steady advection-diffusion equation with bi-constant wind speed.
This method is based on iterative substructuring, and uses Fast Diagonalization to eliminate
interior degrees of freedom on each element. We have also shown how to use this method as
a preconditioner for advection-diffusion systems with non-constant wind speeds. Preliminary
results are positive, and we expect improved iteration counts by incorporating a Neumann-
Neumann preconditioner into elemental interface solves.

PRECONDITIONERS FOR ADVECTION-DIFFUSION EQUATION 9

FIG. 7.3. Computed solution of steady advection diffusion flow with recirculating wind~w = 200(y(1−
x2),−x(1− y2)). A spectral element discretization with 12 elements in each dimension, and polynomial degree 4
on each element.(left) Comparison of preconditioned Flexible GMRES iterations and non-preconditioned GMRES
iterations for solving equation (3.8). (right)

Appendix: One Dimensional Matrix Decomposition for Matrix-Free Domain De-
composition. The tensor product basis of the spectral element method allows for efficient
one dimensional dense matrix-matrix products to replace large sparse matrix-vector prod-
ucts. This tensor product formulation also allows for the use of the Fast Diagonalization
Method, which is a key component of the element-based matrix-free preconditioning strategy
we advocate in this paper. Because it is common to use node orderings that enumerate interior
degrees of freedom and then boundary degrees of freedom we show the 1D building blocks
needed to formulate the 2D operators in terms of their interior and boundary couplings within
a lexigraphically ordered tensor product framework. We letN be the degree of the polynomial
basis for a given discretization.

We write F̂(N+1)×(N+1) as the full 1D advection-diffusion matrix, and̂B(N+1)×(N+1) as
the diagonal 1D mass matrix.F(N+1)2×(N+1)2 = F̂ ⊗ B̂+ B̂⊗ F̂ is the sparse 2D advection-

diffusion matrix on a single element. We can decomposeF̂ and B̂ into their interior and
boundary couplings.

F̂ii = F̂(2 : N,2 : N) Interior-Interior
F̂iLR = F̂(2 : N,1 : N+1) Interior-Boundary
F̂iTB = F̂(1 : N+1,2 : N) Boundary-Interior
F̂bb = F̂(1,1)+ Â(1,N)+ F̂(N,1)+ F̂(N,N) Boundary-Boundary
B̂ii = B̂(2 : N,2 : N) Interior-Interior
B̂bb = B̂(1 : 1,~0,N+1 : N+1) Boundary-Boundary

This decomposition allowsF to be written asF = FII +FΓΓ +FIΓ +FΓI with
FII = F̂ii ⊗ B̂ii + B̂ii ⊗ F̂ii

FΓΓ = F̂ ⊗ B̂bb+ B̂bb⊗ F̂ + F̂bb⊗ B̂ii + B̂ii ⊗ F̂bb

FIΓ = F̂iLR⊗ B̂ii + B̂ii ⊗ F̂iLR

FΓI = F̂iTB⊗ B̂ii + B̂ii ⊗ F̂iTB.

REFERENCES

[1] M. DEVILLE , P. FISCHER, AND E. MUND, High-Order Methods for Incompressible Fluid Flows, Cambridge
Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2002.

[2] H. ELMAN , V. HOWLE, J. SHADID , R. SHUTTLEWORTH, AND R. TUMINARO, Block preconditioners based
on approximate commutators, SIAM J. Sci. Comput., 27 (2006), pp. 1651–1668.

10 H. ELMAN AND P. A. LOTT

[3] H. ELMAN , D. SILVESTER, AND A. WATHEN, Finite Elements and Fast Iterative Solvers with applications
in incompressible fluid dynamics, Numerical Mathematics and Scientific Computation, Oxford University
Press, New York, 2005.

[4] R. LYNCH, J. RICE, AND D. THOMAS, Direct solution of partial difference equations by tensor product
methods, Numer. Math., 6 (1964), pp. 185–199.

[5] Y. M ADAY, A. PATERA, AND E. RØNQUIST, An operator-integration-factor splitting method for time de-
pendent problems: Application to incompressible fluid flow., Journal of Scientific Computation, (1990),
pp. 263–292.

[6] Y. SAAD , A flexible inner-outer preconditioned gmres algorithm, SIAM Journal on Scientific Computing, 14
(1993), pp. 461–469.

[7] A. TOSELLI AND O. WIDLUND , Domain Decomposition Methods - Algorithms and Theory, Springer Series
in Computational Mathematics, Springer, 2005.

[8] H. TUFO AND P. FISCHER, Terascale spectral element algorithms and implementations, in Supercomputing
’99: Proceedings of the 1999 ACM/IEEE conference on Supercomputing (CDROM), New York, NY,
USA, 1999, ACM Press, p. 68.

